GLYCOSIDASE INHIBITION BY PLANT ALKALOIDS WHICH ARE STRUCTURAL ANALOGUES OF MONOSACCHARIDES

S. V. Evans, L. E. Fellows, T. K. M. Shing* and G. W. J. Fleet*

Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, U.K.; *Dyson Perrins Laboratory, Oxford University, Oxford, OX1 3QY, U.K.

(Received 6 February 1985)

Key Word Index—Glycosidase; alkaloids; 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine; deoxynojirimycin; 1,5-dideoxy-1,5-imino-p-mannitol.

Abstract—The inhibitory activities of three plant alkaloids, deoxynojirimycin, 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine and 1,5 dideoxy-1,5-imino-D-mannitol towards glycosidases from several sources have been compared. These are structural analogues of D-glucose, D-fructose and D-mannose respectively. The occurrence of 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine in Lonchocarpus sericeus seed is confirmed and has been shown to be responsible for the glucosidase inhibition wrongly attributed to 1,5-dideoxy-1,5-imino-D-mannitol in a previous report.

INTRODUCTION

Several examples of alkaloids which structurally resemble sugars are now known in nature [1, 2]. Three such analogues of monosaccharides in which the ring oxygen is replaced by nitrogen, have been found in plants: 1,5 dideoxy-1,5-imino-D-glucitol (1) (deoxynojirimycin) in Morus (Moraceae), a glucose analogue [3]; 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine (2) in Derris elliptica (Wall.) Benth. (Leguminosae), a fructose analogue [4]; and 1,5-dideoxy-1,5-imino-D-mannitol (3) in Lonchocarpus sericeus H.B.K. (a legume closely related to Derris), a mannose analogue [5].

RESULTS AND DISCUSSION

In a previous report [6] we stated that 3 is a potent competitive inhibitor of α - and β -glucosidase and insect derived trehalase. This was incorrect. Seed of L. sericeus has now been shown to contain both 2 and 3 in a ratio of approximately 3:1. When the original isolation of 3 was repeated, minor changes in the solvent composition (see Experimental) used in the final crystallization led to the crystallization of 2 rather than 3, and it was 2 not 3 which was responsible for the glucosidase inhibition reported. Confirmation of the structure of 2 from L. sericeus has now been obtained by comparison with an authentic sample of 2 unambiguously synthesized [7].

Both 1 and 3 are known to be inhibitors of glucosidase and mannosidase respectively [8-10]. We have now compared the activity of authentic 2 and 3 (isolated from seed of *L. sericeus*) and 1 (isolated from leaves of *Morus nigra*) against several glycosidases from various sources. The results are shown in Table 1.

The fructose analogue 2 proved somewhat surprisingly a more effective inhibitor of α - and β -glucosidases than 1, and was also the only one which inhibited invertase. Predictably 3 inhibited α -mannosidase and not glucosidases but its more potent inhibition of α -fucosidase was unexpected and noteworthy. The insect trehalase inhibition previously attributed to 3 [6] (50% inhibition at

 5.5×10^{-5} M) was due to 2. Unfortunately the action of 1 and 3 on this enzyme could not be investigated since the preparation was no longer available, but 1 has been reported to inhibit fungal trehalase [8].

Sugar analogues, both natural and synthetic, are currently of interest as specific inhibitors of carbohydrases in a variety of organisms [11, 12]. In particular 1 and 2 inhibit α - and β -glucosidases, and 3 an α -mannosidase of glycoprotein processing [13–15]. It is likely that their

1 deoxynojirimycin; [1,5 - dideoxy - 1,5 - imino - D - glucitol]

2 2R,5R - dihydroxymethyl - 3R,4R - dihydroxypyrrolidine

3 deoxymannojirimycin [1,5 - dideoxy - 1,5 - imino - D - mannitol]

S. V. Evans et al.

Table 1. Concentration of inhibitor required to produce 50% inhibition of enzyme activity under the stated conditions.

Enzyme	Inhibitor		
	1,5-Dideoxy- 1,5-imino-D- mannitol (3)	2,5-Dihydroxy- methyl-3,4-dihydroxy- pyrrolidine (2)	1-Deoxynojiri- mycin (1)
α-Glucosidase			
(yeast)	NI	$3.3 \times 10^{-6} \text{ M}$	$1.9 \times 10^{-4} \text{ M}$
β-Glucosidase			
(emulsin)	NI	$7.8 \times 10^{-6} \text{ M}$	$8.1 \times 10^{-5} \text{ M}$
α-Mannosidase			
(Jack Bean)	$1.5 \times 10^{-4} \text{ M}$	NI	NI
α-Galactosidase			
(Asp. niger)	NI	NI	NI
β-Galactosidase			
(Asp. niger)	NI	NI	NI
β-Glucuronidase			
(Helix pomatia)	NI	NI	NI
Invertase			
(yeast)	NI	$5.25 \times 10^{-5} \text{ M}$	NI
α-Fucosidase			
(bovine epididymis)	$2.2 \times 10^{-5} \text{ M}$	NI	NI
β-Xylosidase			
(Asp. niger)	NI	$2.5 \times 10^{-4} \text{ M}$	$4.0 \times 10^{-4} \text{ M}$

^{*}NI, up to 1×10^{-3} M, no inhibition.

presence contributes to the chemical defence of those plants in which they occur. Larvae of the bruchid Callosobruchus maculatus, a major pest of grain legumes, cannot survive levels greater than 0.03% w/w of 2 in the diet, which has been shown to inhibit the gut α - and β -glucosidases [16]. Locusts are deterred from feeding by 2 [17]. The previously observed inhibition by 2 of insect trehalase [6] is particularly noteworthy, since specific trehalase inhibitors could theoretically be useful insecticides, trehalose not having been found in mammals.

EXPERIMENTAL

Isolation and characterization of 1. Finely ground leaves of Morus nigra (2 kg) collected in RBG Kew was extracted with 70% aq. MeOH (4.5 l.). The extract was applied to an Amberlite IR-120 column (3 × 35 cm, NH₄ ⁺ form) previously equilibrated in 70% MeOH, and 1 was eluted with 300 ml 1 M pyridine. On evaporating to dryness, the residue was dissolved in 15 ml H₂O and applied to an Amberlite CG-50 column (1.5 × 40 cm, NH ⁺ form). Slow elution with H₂O enabled 1 to be separated from brown pigment. Fractions of pure 1 were applied to an Amberlite CG-400 column (1 × 10 cm, OH ⁻ form) and 1 passed through unbound. Removal of solvent and recrystallization from MeOH containing a small proportion of EtOH and Me₂CO yielded 2.1 g of crystalline free base. Comparison of 1 with authentic deoxynojirimycin (see Acknowledgements) by NMR analysis showed that they were identical.

Isolation and characterization of 2 and 3. Finely ground seed 100 g of Lonchocarpus sericeus H.B. & K. (collected by W. O. Boateng in Ghana, Accession N° KOTH/BD/3/81) was defatted with Me₂CO (500 ml) and extracted with 70% aq. MeOH (3 × 400 ml). Pooled filtered extracts were applied to an Amberlite CG-120 column (1.5 × 40 cm, NH₄ + form) previously equilibrated in 70% aq. MeOH. After washing with H₂O (700 ml), 2 and

3 were eluted with 1 M aq. pyridine (500 ml). On evaporating to dryness the residue dissolved in H_2O (15 ml) was applied to an Amberlite CG-400 column (1 × 10 cm, OH⁻ form). Both 2 and 3 were removed by washing with H_2O . Removal of the solvent and recrystallization from hot EtOH yielded 960 mg of 2 free base as a crystalline solid, mp 116–118°, $[\alpha]_D^{20} + 54.3^\circ$ (c 1.2; H_2O). The NMR parameters of this compound were identical to those previously described [4], in particular the characteristically simple ¹³C NMR. The absolute configuration of 2 was confirmed as 2R,5R-dihydroxymethyl-3R,4R-dihydroxypyrrolidine by comparison with an authentic sample unambiguously synthesized from p-glucose [7].

The mother liquor containing 2 and 3 was treated as previously described [5]. Adjustment of the pH to 5.0, evaporation to dryness, dissolution in MeOH and addition of a few drops of EtOH and Me₂CO gave 70 mg of a crystalline monohydrochloride of 3. Spectral characterizations were identical to those of a synthetic sample of 3 (see Acknowledgements).

Enzyme assays. Compounds 1, 2 and 3 were incorporated into assay buffers where appropriate to give a final concentration range of 10^{-8} to 10^{-3} M. Sources and assay techniques for α - and β - glucosidase, α -mannosidase α - and β - galactosidase and β glucuronidase were as described in ref. [6]. Other enzymes were assayed as follows: \(\beta\)-xylosidase (Sigma X-5375, Aspergillus niger). 400 µl 50 mM trisodium citrate, pH 5.0; 200 µl 2 mM onitrophenyl- β -D-xylopyranoside, 200 μ l enzyme (4.5 μ g/ml). Incubated for 10 min at 25°. Added 600 μ l 0.25 M NaOH. Read at 410 nm. α-fucosidase (Sigma F-7753, bovine epididymis). 200 μ l 50 mM trisodium citrate, pH 6.5; 200 μ l 1 mM pnitrophenyl- α -L-fucopyranoside, 200 μ l enzyme (5 μ g/ml). Incubated for 10 min at 25°. Added 400 µl 0.25 M NaOH. Read at 410 nm. Invertase (Sigma I-4504, bakers yeast). Assay involved an incubation and an assay mixture. Incubation mixture; 500 μ l 0.1 M acetate buffer, pH 4.6; 250 μ l sucrose (100 mg/ml); 50 μ l enzyme (10 μ g/ml). Incubated for 10 min at 25°. Added 400 μ l 0.3 M Tris buffer. Assay mixture; 1.66 ml 0.1 M triethanolamine buffer, pH 7.6; 100 μ l 0.2 M MgCl₂; 100 μ l ATP (10 mg/ml); 100 μ l NADP (10 mg/ml); 10 μ l hexokinase (10 mg/ml); 10 μ l phosphoglucose isomerase (10 mg/ml); 20 μ l incubation solution; 10 μ l glucose-6-phosphate dehydrogenase (5 mg/ml). Incubated for 5 min at 25°. Read at 360 nm.

Acknowledgements—We thank Drs. E. Truscheit and D. Schmidt for a sample of synthetic 1 and Drs. G. Legler and G. Kinast for samples of synthetic 3. The inhibition by 2 of invertase has also been observed in the laboratories of Dr. A. D. Elbein and Dr. G. Legler (pers. comms). We acknowledge an SERC post doctoral award (to TKMS).

REFERENCES

- Fleet, G. W. J., Smith, P. W., Evans, S. V. and Fellows, L. E. (1984) J. Chem. Soc. Chem. Commun. 1240.
- Evans, S. V., Hayman, A. R., Fellows, L. E., Shing, T. K. M., Derome, A. E. and Fleet, G. W. J. (1985) Tetrahedron Letters 26, 1465.
- Yagi, M., Kuono, T., Aoyagi, Y. and Murai, H. (1976) Nippon Nogei Kagaku Kaishi 50, 570 (Chem. Abstr. 86, 167851).

- Welter, A., Jadot, J., Dardenne, G., Marlier, M. and Casimir, J. (1976) Phytochemistry 15, 747.
- Fellows, L. E., Bell, E. A., Lynn, D. G., Pilkiewicz, F., Miura, I. and Nakanishi, K. (1979) J. Chem. Soc. Chem. Commun. 977.
- Evans, S. V., Fellows, L. E. and Bell, E. A. (1983) Phytochemistry 22, 768.
- Fleet, G. W. J. and Smith, P. W. (1985) Tetrahedron Letters 26, 1469.
- 8. Murao, S. and Miyata, S. (1980) Agric. Biol. Chem. 44, 219.
- Schmidt, D. D., Frommer, W., Müller, L. and Truscheit, E. (1979) Naturwissenschaften 66, 584.
- 10. Legler, G. and Jülich, E. (1984) Carbohydr. Res. 128, 61.
- 11. Schwartz, R. T. and Datema, R. (1984) Trends Biochem Sci. 32.
- 12. Elbein, A. D. (1984) CRC Crit. Rev. Biochem. 16, 21.
- Saunier, B., Kilker, R. D., Tkacz, J. S., Quaroni, A. and Herscovics, A. (1982) J. Biol. Chem. 257, 14155.
- Elbein, A. D., Mitchell, M., Sanford, B. A., Fellows, L. E. and Evans, S. V. (1984) J. Biol. Chem. 259, 12409.
- Fuhrmann, U., Bause, E., Legler, G. and Ploegh, H. (1984) Nature 307, 755.
- Evans, S. V., Gatehouse, A. M. R. and Fellows, L. E. (1985) *Ent. Exp. Appl.* (in press).
- Blaney, W. M., Simmonds, M. S. J., Evans, S. V. and Fellows, L. E. (1984) Ent. Exp. Appl. 36, 209.